BlackBoxOptim.OptimizationResults("adaptive_de_rand_1_bin_radiuslimited", "Max number of steps (10000) reached", 10001, 1.536689152035643e9, 0.14388179779052734, DictChain{Symbol,Any}[DictChain{Symbol,Any}[Dict{Symbol,Any}(:RngSeed=>586919,:NumDimensions=>2,:SearchRange=>Tuple{Float64,Float64}[(-1.0, 2.0), (-1.0, 1.0)],:MaxSteps=>10000),Dict{Symbol,Any}()],Dict{Symbol,Any}(:FitnessScheme=>ScalarFitnessScheme{true}(),:NumDimensions=>:NotSpecified,:PopulationSize=>50,:MaxTime=>0.0,:SearchRange=>(-1.0, 1.0),:Method=>:adaptive_de_rand_1_bin_radiuslimited,:MaxNumStepsWithoutFuncEvals=>100,:RngSeed=>1234,:MaxFuncEvals=>0,:SaveTrace=>false…)], 9385, ScalarFitnessScheme{true}(), BlackBoxOptim.TopListArchiveOutput{Float64,Array{Float64,1}}(-2.0218067833597875, [2.0, 0.105783]), BlackBoxOptim.PopulationOptimizerOutput{FitPopulation{Float64}}(FitPopulation{Float64}([2.0 2.0 … 2.0 2.0; 0.105783 0.105783 … 0.105783 0.105783], NaN, [-2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181 … -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181, -2.02181], 0, BlackBoxOptim.Candidate{Float64}[Candidate{Float64}([2.0, 0.105783], 21, -2.02181, AdaptiveDiffEvoRandBin{3}(AdaptiveDiffEvoParameters(BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.65, σ=0.1), Distributions.Cauchy{Float64}(μ=1.0, σ=0.1), 0.5, false, true), BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.1, σ=0.1), Distributions.Cauchy{Float64}(μ=0.95, σ=0.1), 0.5, false, true), [0.986132, 0.686396, 1.0, 0.900951, 0.676487, 1.0, 1.0, 1.0, 0.568759, 0.602577 … 1.0, 0.675674, 1.0, 0.793572, 0.760721, 0.617878, 0.794706, 0.799388, 0.67912, 0.26578], [0.877314, 0.186429, 1.0, 0.649575, 0.11606, 1.0, 0.863943, 0.977893, 1.0, 0.937058 … 0.991395, 0.0777023, 1.0, 1.0, 0.954632, 1.0, 0.907233, 0.294719, 0.238339, 0.91076])), 0), Candidate{Float64}([2.0, 0.105783], 21, -2.02181, AdaptiveDiffEvoRandBin{3}(AdaptiveDiffEvoParameters(BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.65, σ=0.1), Distributions.Cauchy{Float64}(μ=1.0, σ=0.1), 0.5, false, true), BimodalCauchy(Distributions.Cauchy{Float64}(μ=0.1, σ=0.1), Distributions.Cauchy{Float64}(μ=0.95, σ=0.1), 0.5, false, true), [0.986132, 0.686396, 1.0, 0.900951, 0.676487, 1.0, 1.0, 1.0, 0.568759, 0.602577 … 1.0, 0.675674, 1.0, 0.793572, 0.760721, 0.617878, 0.794706, 0.799388, 0.67912, 0.26578], [0.877314, 0.186429, 1.0, 0.649575, 0.11606, 1.0, 0.863943, 0.977893, 1.0, 0.937058 … 0.991395, 0.0777023, 1.0, 1.0, 0.954632, 1.0, 0.907233, 0.294719, 0.238339, 0.91076])), 0)])))